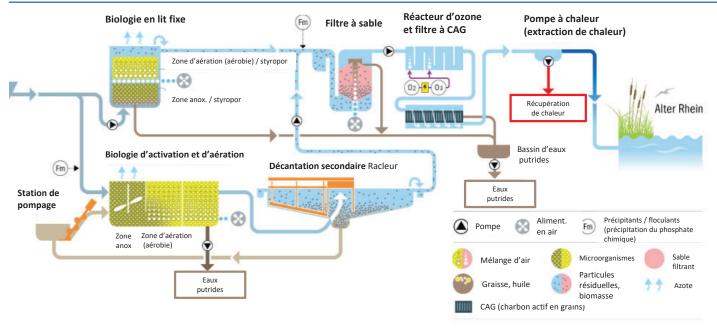
Ozone/CAG: un procédé combiné performant

21 juin 2021 PEAK 1

Structure



- Situation initiale
- Présentation du procédé
- Essai de charbons
- Expériences à l'échelle industrielle
- Coûts
- Ecotoxicologie
- Biodémonstration

Épuration des eaux usées

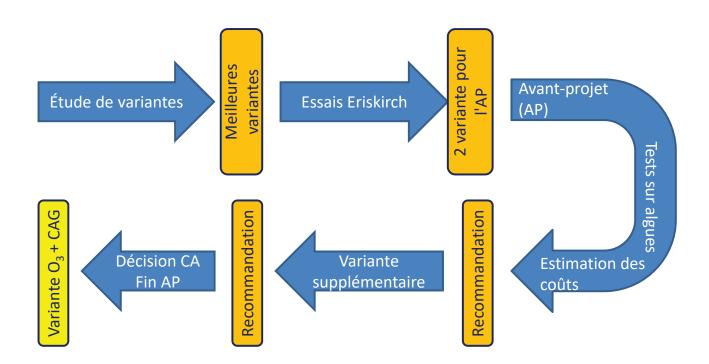
15 Christoph Egli

21. Juni 2021 PEAK 3

Situation initiale

- Participation au processus de planification
- Étude de variantes / procédés
- Décisions de principe
 - Dimensionnement
 - Intégration dans l'installation existante
- Essai pilote / résultats

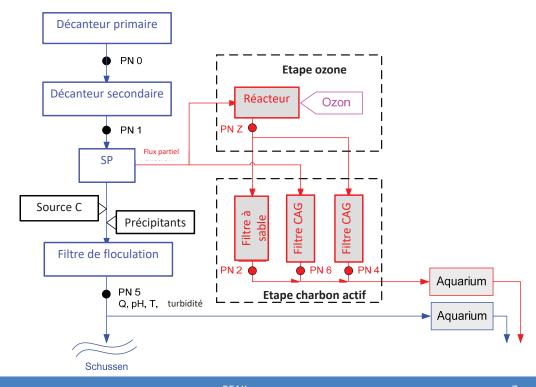
Étude de variantes / procédés


Kriterien	Ozo	nung	Aktivkohle-Verfahren								Kombination Ozonung und Aktivkohle		
	Ozonung + Sandfilter (dazwischen)	Ozonung + Wirbelbett (nachgeschaltet)	Ulmer-Verfahren mit Rückführung der PAK in die Biologie (mit bestehendem Filter als Polizeistufe)	Ulmer-Verfahren ohne Rückführung der PAK in die Biologie (mit bestehendem Filter als Polizeistufe)	PAK-Dosierung auf Sandfilter mit Rückführung in die Biologie (Kloten-Opfikon)	PAK-Direktdosierung in die Biologie	ActifloCarb® + Sandfilter (am Schluss)	PAK-Verfahren mit Membran (am Schluss)	Granulierte Aktivkohle	Ozonung und granulierte Aktivkohle	Ozonung und granulierte Aktivkohle (nach Sandfilter)		
Leistung der bisherigen Pilotversuche oder Realisierung erbracht	+	-	- wenn zwischen Ablauf Biofilter/NKB und Sandfilter		Erfahrung mit Dynasandfilter fehlt komplett (Versuche mit 2- Schicht-Filtration)		- Dimgrösse + Betriebskosten wenig Erfahrung = wenn vor Dynasand positioniert	=	Leistung von Anlagen in D müsste 80% Elimination auf Indikatorsubstanzen zeigen (noch nicht)	-	-		
Zu behandelnde Abwassermenge + Flächenbedarf	+	-	-	-	-		=	-	-	=	=		
Implementierung in bestehendes Layout	+	+	+ mann kann es realisieren	+	+	rden kann	+	+	+	+	+		
Beeinflussung der bestehenden Anlage (Biologie und Schlammbehandlung)	+	+	-	- da keine ÜSS- Entwässerung vorhanden a) Eindickung über VKB (Gefahr PAK in Biofilter) b) eigene PAK- Entwässerung nötig	-	Nort empfohlen, da nicht Gesamtzulauf behandelt werden	-	=	•	•	+		
Flächenbedarf für Peripherie	-	-	•	+	•	nicht Gesamt	-	-	+	-	-		
Energieverbrauch auf ARA (ohne Primärenergie PAK)	-	-	+	+	+	mpfohlen, da ı	-	-	+	=	=		
Aufwand für Betrieb (inkl. Wartung/Aufwand)	Messtechnik + Aggregate	Messtechnik + Aggregate	-	=	+	Nichte	-	-	•	-	- Messtechnik + Aggregate		
Prozessrisiko und Arbeitssicherheit)	=	=	= zusätzliches Prozessrisiko für Biofilter	=	weil Prozesssicherheit reduziert -> Doppelnutzung		=	=	+	=	=		
Flexibilität	+	+	-	=	- nachträglicher Bau von Filter nötig		+	+	+	+	+		
Total*	11	8	11	10	9		8	7	15	10	10		
Entscheid	ja										ja		

^{- = 0} Punkte = = 1 Punkt

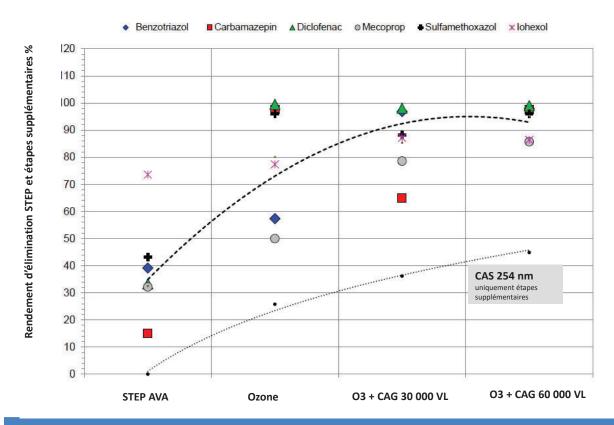
21. Juni 2021 PEAK 5

Processus d'évaluation de la meilleure solution



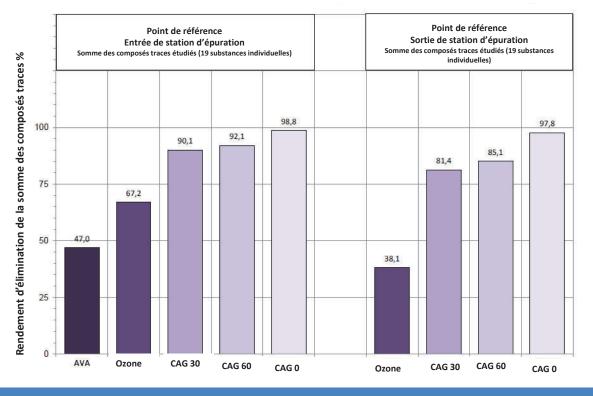
^{= = 1} Punkt + = 2 Punkte

Essai pilote


Essais Eriskirch (projet SchussenAktivplus; 25.11.2014)

 21. Juni 2021
 PEAK
 7

Élimination des composés traces

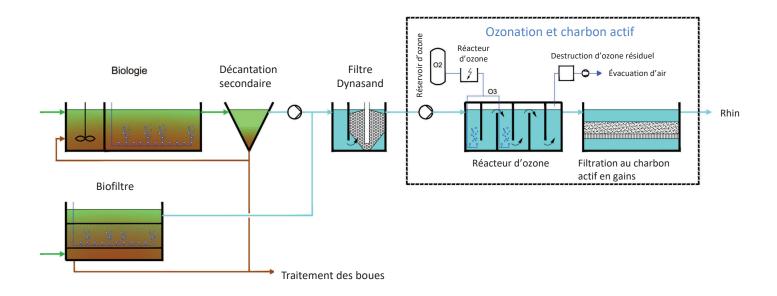


Rendement avec 0.3mg O₃/mg COD

Altenrhein / STEP d'Eriskirch - Rendement d'élimination de tous les composés traces étudiés

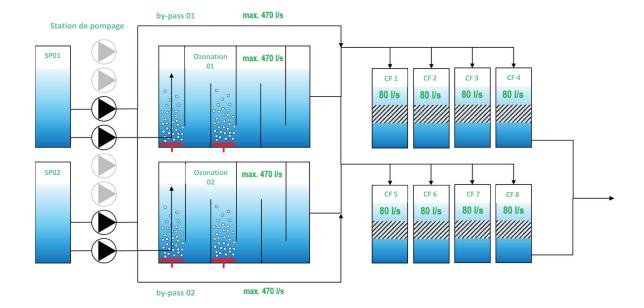
21. Juni 2021 PEAK 9

Présentation du procédé



- Concept
- Schéma fonctionnel
- Paramètres de dimensionnement

Concept


15 Christoph Egli

21. Juni 2021 PEAK 11

Schéma fonctionnel

Dimensionnement

Conception étape EMP:

- Traitement de flux partiel
- $Q_{dim} = 470 \text{ l/s} = 2.5 Q_{TS}$

· Hydraulique:

- Charge et sortie avec 470 l/s, redondante
- Charge ozonation avec 470 l/s par ligne possible (équipement pour 470 l/s)
- Équipement filtre à CAG pour 470 l/s

Ozonation:

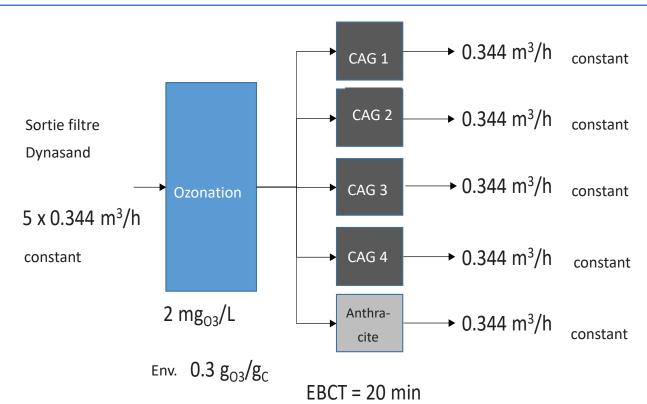
- 2 générateurs redondants pouvant couvrir les charges polluantes suivantes:
 - 0.1 / 0.2* / 0.3* / 0.5 / 0.8 gO₃/gCOD (*= optimisé en énergie)
 - Toutes les charges polluantes avec un traitement de flux partiel de 470 l/s
- Pilotage / régulation
 - · Proportionnel à Q
 - Dépend de l'absorbance UV ou des «UV» et de la charge de nitrite
 - Dépend de la teneur en ozone résiduel dans les eaux usées ou dans les effluents gazeux

21. Juni 2021 PEAK 13

Dimensionnement

			Q = 2.5 Q _{Ts,}	VSA	Q = Q _{moyenne}		
Paramètre	es .		6 cellules	8 cellules	6 cellules	8 cellules	
			en service	en service	en service	en service	
	Q	[l/s]	470	470	256	256	
	Cellules filtrantes actives	[-]	6	8	6	8	
	Cellules filtrantes inactives	[-]	2	0	2	0	
	Q par cellule filtrante	[l/s]	78.3	58.8	42.7	32.0	
sélectionné	Surface par cellule filtrante	[m2]	47.25	47.25	47.25	47.25	
sélectionné	Surface filtrante totale active		283.5	378.0	283.5	378.0	
calculé	Vitesse de filtration vf	[m/h]	5.97	4.48	3.25	2.44	
sélectionné	h_CAG (hauteur de déversement	min.)[m]	1.55	1.55	1.55	1.55	
calculé	EBCT (directive ≥ 15 min.)	[min]	15.6	20.8	28.6	38.1	

Essai de charbons

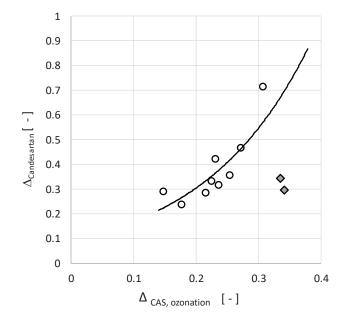


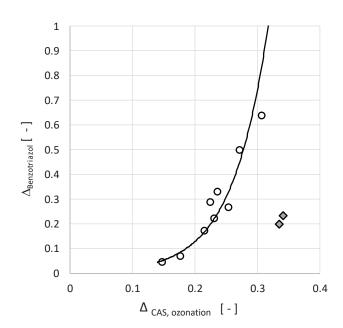
- Concept de l'installation pilote
- Données de mesure CAS / substances de référence
- Élimination O₃ / CAG

21. Juni 2021 PEAK 15

Concept de l'installation pilote

Expériences à l'échelle industrielle




- Corrélation CAS / composés traces spéc.
- Types d'exploitation O₃ / CAG
- Rendement

21. Juni 2021 PEAK 17

Corrélation CAS / mesures spéc.

Types d'exploitation

Ozonation:

- De septembre 2019 (mise en service) à février 2020: proportionnelle à Q avec 0.3gO3/gCOD; deux lignes
- De mars 2020 à octobre 2020: proportionnelle à Q avec 0.2gO3/gCOD; deux lignes
- De novembre 2020 à décembre 2020: proportionnelle à Q avec 0.1gO3/gCOD; une
- À partir de janvier 2021: delta UV avec valeur théorique de 10% (0.1gO3/gCOD); une ligne

Filtre à CAG

À partir de septembre 2019 (mise en service) jusqu'à aujourd'hui avec 7 cellules en service continu, 1 cellule en standby

PEAK 21. Juni 2021

Rendement Résultats Envilab (25.05.2021)

				27.+28.02.2021						07.+08.	04.2021		09.+10.05.2021			
				Échantillons composites de 48h					Écha	ntillons com	positeș de 4	18h	Échantillons composites de 48h			
		Prélèvement: N° prél.		rtie DP	Entrée ozon. 0991	Entrée CAG 0992	Sortie STEP		Sortie DP	Entrée ozon. 1904	Entrée CAG 1905	Sortie STEP	Sortie DP	Entrée ozon. 2548	Entrée CAG 2549	Sortie STE
		Amisulprid		0.23	0.22	0.17	<0.01		0.31	0.28	0.23	<0.01	0.35	0.29	0.23	<0.0
		Carbamazepin		0.27	0.24	0.09	0.01		0.32	0.31	0.14	0.01	0.32	0.31	0.18	0.
٦,		Citalopram		0.09	0.11	0.08	<0.01		0.11	0.11	0.09	<0.01	0.14	0.10	0.08	<0
ž		Clarithromycin		0.10	0.11	0.07	<0.01		0.09	0.10	0.08	<0.01	0.08	0.06	0.04	<0
sen	Groupe 1	Diclofenac		1.73	1.21	0.41	<0.01		1.61	1.36	0.59	<0.01	2.42	1.48	0.81	<0
io		Hydrochlorothiazid		0.76	0.81	0.64	0.05		1.02	0.83	0.76	0.04	1.15	0.89	0.75	0
trat		Metoprolol		0.09	0.08	0.06	<0.01		0.09	0.07	0.06	<0.01	0.12	0.08	0.08	<(
Concentrations en µg/L		Venlafaxin		0.18	0.19	0.15	0.01		0.20	0.20	0.16	0.01	0.29	0.22	0.18	<(
Š		Benzotriazol		5.48	5.97	5.13	1.35		16.10	9.05	7.99	0.95	15.20	2.78	2.41	1
	,	Candesartan		0.72	0.68	0.52	0.14		0.74	0.74	0.59	0.20	0.93	0.75	0.60	(
	Groupe 2	Irbesartan		0.59	0.58	0.45	0.04		0.69	0.69	0.55	0.06	0.78	0.57	0.47	
		Methylbenzotriazol		1.20	1.47	1.16	0.17		12.50	9.95	7.75	0.11	2.27	1.14	0.96	(
														1		
				F	limination	Elimination	Elimination			Elimination	Elimination	Elimination		Elimination	Elimination	Eliminati
					oio + ozone	O3+CAG	totale			bio + ozone	O3+CAG	totale		bio + ozone	O3+CAG	totale
		Amisulprid			27%	>96%	>96%			24%	>96%	>97%		35%	>97%	>9
		Carbamazepin			67%	94%	95%			56%	>96%	96%		46%	>93%	>9
		Citalopram			10%	>91%	>89%			14%	>91%	>91%		42%	>90%	>(
		Clarithromycin			28%	>91%	>90%			15%	>90%	>89%		42%	>84%	>{
%	Groupe 1	Diclofenac			77%	>99%	>99%			63%	>99%	>99%		66%	>99%	>1(
e en		Hydrochlorothiazid			16%	94%	93%			26%	96%	96%		34%	93%	
<u>e</u>		Metoprolol			30%	>87%	>89%			26%	>87%	>89%		38%	>88%	>!
n L		Venlafaxin			17%	94%	93%			20%	95%	95%		36%	96%	
Elimination cumulée		Benzotriazol			6%	77%	75%			50%	89%	94%		84%	29%	>{
aţi	Crounc 3	Candesartan			27%	80%	81%			21%	73%	74%		35%	72%	>7
Ē	Groupe 2	Irbesartan			24%	93%	93%			20%	92%	92%		40%	94%	>9
<u> </u>		Methylbenzotriazol			3%	89%	86%			38%	99%	99%		58%	74%	>
			Valeur mov	venne	28%	>90%	>90%	Val	eur movenn	31%	>92%	>93%	Valeur moven	46%	>84%	>
				EMP selon calcul AWEL >91%				EMP selon calcul AWEL >9				EMP selon calcul AWEL				

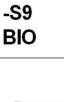
Coûts

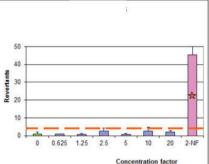
- Coûts d'investissement
- Coûts d'exploitation

 21. Juni 2021
 PEAK
 21

Ecotoxicologie

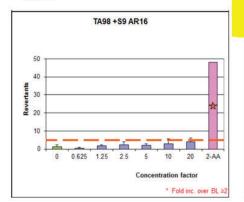
- Conclusions des essais pilotes
- Impacts écotoxicologiques de différents traitements complémentaires (projet soutenu par l'OFEV)

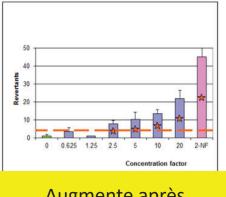

Toxicité sur les algues



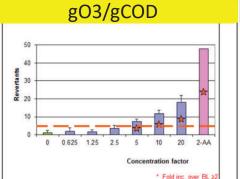
Paramètres	Unité	BIO 0932	SF 0933	BIO- 0.5- DYN 0957	BIO- 0.8- DYN 0958	SF- 0.3- GAK NEU 0959	SF- 0.3- GAK DD 0960	SF- 0.5- GAK DD 0961	SF- 0.5- GA- KER 0962	
Benzotriazol µg/L		13.5	12.3	3.25	0.33	0.02	0.34	0.13	0.60	
Carbamazepin	μg/L	0.54	0.55 0.8 r		ngO ₃ /n	ngDO	С			
Diclofenac	μg/L	2.2	2.4			0.3	3 mgO	mgDOC		
Mecoprop	µg/L	0.11	0.09	0.03			0.01		0.02	
Sulfamethoxazol	μg/L	0.12	0.24							
Clarithromycin	μg/L	0.65	0.63	0.02	0.02					
Metoprolol	μg/L	0.22	0.21						0.02	
Rendement d'élimination benzotriazole	%	-	1500	76	97	99	97	99	95	
Rendement d'élimination moyen	%	-		>85	>98	>98	>98	>98	>98	
Photosynthèse algues (avec SPE), 2h	Concentration en équivalents diuron (DEQ) (ng/I)*	125	76	36	19	34	12	34	25	
Photosynthèse algues (avec SPE), 24h	Concentration en équivalents diuron (DEQ) (ng/l)*	700	607	137	75	92	32	71	53	

21. Juni 2021 PEAK 23

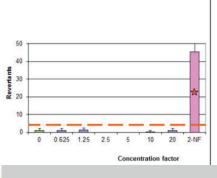

Test d'Ames sur la mutagénicité Source: Mesures du 5.9.92018



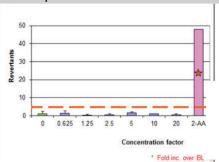
* Fold inc. over BL ≥2


+S9 BIO

OZO



Augmente après ozonation avec 0.29


Mesures du 5.9.92018 Cornelia Kienle + Etienne Vermeirssen Centre Ecotox Dübendorf

CAG

Plus aucune mutagénicité mesurable

après le filtre au CAG

Cours PEAK-VSA V51/21

22 / 23 juin 2021

12/15

Poursuite du projet

Objectif:

Evaluation du procédé / optimisation / dimensionnement

Intérêts:

- Div. problématiques (p. ex. importance du traitement complémentaire)
- Différentes parties prenantes

Concept de mesure:

- Test d'Ames (mutagénicité)
- Test algues combiné (photosynthèse et croissance des algues)
- Test de reproduction avec des daphnies

21. Juni 2021 PEAK 25

Biodémonstration

- Idée
- Essai pilote
- Exécution à l'échelle industrielle
- Expériences d'exploitation

Essai pilote

Pisciculture (phase 1)

- 2 espèces
- comptant chacune 25 spécimens
- 12 mois

Objectif:

- Évaluation de la santé des poissons
- Surveillance à long terme de l'installation EMP
- Conformité et compatibilité des poissons avec les produits alimentaires

Pisciculture (phase 2)

- Corégones
- 120 spécimens
- env. 9 mois

21. Juni 2021 PEAK 27

Installation à l'échelle industrielle

Pisciculture (phase 1): env. 2j/a

Corégones / ombles

Objectif:

- Expérience du processus
- Rentabilité
- Synergies / détermination du potentiel

Pisciculture (phase 2): env. 100j/a

Traitement du projet / faisabilité

Récapitulatif

- L'installation à l'échelle industrielle fait ses preuves.
- Les résultats sont corrèlés avec l'installation pilote.
- Le procédé combiné offre divers avantages.
- Plusieurs questions encore en suspens (installation pilote / projet OFEV).

21. Juni 2021 PEAK 29

Abwasserverband Altenrhein Postfach 55 Wiesenstrasse 32 CH-9423 Altenrhein

Tel: +41 71 858 67 67 Fax: +41 71 858 67 77 www.ava-altenrhein.ch

